research

Collision avoidance maneuver design based on multi-objective optimization

Abstract

The possibility of having collision between a satellite and a space debris or another satellite is becoming frequent. The amount of propellant is directly related to a satellite’s operational lifetime and revenue. Thus, collision avoidance maneuvers should be performed in the most efficient and effective manner possible. In this work the problem is formulated as a multi-objective optimization. The first objective is the Δv, whereas the second and third one are the collision probability and relative distance between the satellite and the threatening object in a given time window after the maneuver. This is to take into account that multiple conjunctions might occur in the short-term. This is particularly true for the GEO regime, where close conjunction between a pair of object can occur approximately every 12h for a few days. Thus, a CAM can in principle reduce the collision probability for one event, but significantly increase it for others. Another objective function is then added to manage mission constraint. To evaluate the objective function, the TLE are propagated with SGP4/SDP4 to the current time of the maneuver, then the Δv is applied. This allow to compute the corresponding “modified” TLE after the maneuver and identify (in a given time window after the CAM) all the relative minima of the squared distance between the spacecraft and the approaching object, by solving a global optimization problem rigorously by means of the verified global optimizer COSY-GO. Finally the collision probability for the sieved encounters can be computed. A Multi-Objective Particle Swarm Optimizer is used to compute the set of Pareto optimal solutions.The method has been applied to two test cases, one that considers a conjunction in GEO and another in LEO. Results show that, in particular for the GEO case, considering all the possible conjunctions after one week of the execution of a CAM can prevent the occurrence of new close encounters in the short-term

    Similar works