research

An improved instruction-level power model for ARM11 microprocessor

Abstract

The power and energy consumed by a chip has become the primary design constraint for embedded systems, which has led to a lot of work in hardware design techniques such as clock gating and power gating. The software can also affect the power usage of a chip, hence good software design can be used to reduce the power further. In this paper we present an instruction-level power model based on an ARM1176JZF-S processor to predict the power of software applications. Our model takes substantially less input data than existing high accuracy models and does not need to consider each instruction individually. We show that the power is related to both the distribution of instruction types and the operations per clock cycle (OPC) of the program. Our model does not need to consider the effect of two adjacent instructions, which saves a lot of calculation and measurements. Pipeline stall effects are also considered by OPC instead of cache miss, because there are a lot of other reasons that can cause the pipeline to stall. The model shows good performance with a maximum estimation error of -8.28\% and an average absolute estimation error is 4.88\% over six benchmarks. Finally, we prove that energy per operation (EPO) decreases with increasing operations per clock cycle, and we confirm the relationship empirically

    Similar works

    Full text

    thumbnail-image

    Available Versions