An optical, electro-optic and thermal characterisation of various organic crystals

Abstract

The organic materials S - 3 - methyl - 5 - nitro - N - (1 - phenylethyl) - 2 - pyridinamine [3- methyl-MBANP] and S - N - methyl - 5 - nitro - N -(1 - phenylethyl) - 2 - pyridinamine [N- methyl-MBANP] belong to a family of compounds based on the 2-(alpha-methylbenzylamino)-5- nitropyridine molecule and were identified as promising nonlinear optical materials by the powder disk test. Large single crystals were grown from solution for N-methyl-MBANP, which crystallises in a monoclinic space group, and from the melt and solution for 3-methyl-MBANP which crystallises in an orthorhombic space group. Orthoscopic examination of N-methyl-MBANP revealed no dispersion of the dielectric axes unlike the parent molecule and the position of the dielectric axes was correlated with the molecular structure. Preparation of prisms from single crystals of both materials facilitated the measurement of refractive indices in the visible and the near infra-red. The values obtained were correlated with the crystal structure and a Sellmeier equation fitted to each of the dispersion curves. The nonlinear optical properties of both materials were evaluated by use of the Maker fringe technique and phase matched intensities. By means of these two methods, the full nonlinear d sub i sub j tensor was obtained for both materials at a fundamental wavelength of 1064nm. The linear electro-optic properties of N-methyl-MBANP were evaluated using a conoscopic experiment and correlated with the crystal structure together with the magnitude of all non-zero elements in the d sub i sub j tensor. Separately, the thermal properties of N-methylurea (NMU), 4-nitro-4'-methylbenzylidene aniline (NMBA) and Zinc TrisThiourea Sulfate (ZTS) were evaluated and all correlated with the crystal structure and bonding

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 14/06/2016