research

Using VLBI Data to Investigate the Galaxy Structure in the Gravitationally Lensed System B1422+231

Abstract

Gravitationally lensed systems with multiply imaged quasars are an excellent tool for studying the properties of distant galaxies. In particular, they provide the most accurate mass measures for the lensing galaxy. The system B1422+231 is a well studied example of a quadruply imaged quasar, with high-quality VLBI data available. Very accurate data on image positions, fluxes and deconvolved image sizes provide good constraints for lensing models. We discuss here the failure of smooth models in fitting the data. Since it is intuitively clear that the mass of a lens galaxy is not a smooth entity, we have investigated how deviation from a smooth model can influence lensing phenomena, especially the image flux ratios. To explore expectations about the level of substructure in galaxies and its influence on strong lensing, N-body simulations of a model galaxy are employed. By using the mass distribution of this model galaxy as a lens, synthetic data sets of different four image system configurations are generated. Their analysis can possibly provide evidence for the presence and strong influence of substructure in the primary lens galaxy

    Similar works