research

Accelerator studies of neutrino oscillations

Abstract

The question of whether the neutrino has a non-vanishing mass plays acrucial role in particle physics. A massive neutrino would unambiguously reveal the existence of new physics beyond the Standard Model. In addition, it could have profound implications on astrophysics and cosmology, with effects on the evolution of the Universe. Experiments aiming at direct neutrino-mass measurements based on kinematics have not been able, so far, to measure the very small neutrino mass. Indirect measurements can be performed by exploiting reactions which may only occur for massive neutrinos. Neutrino oscillation is one of those processes. The mass difference between neutrino mass-eigenstates can be inferred from a phase measurement. This feature allows for high sensitivity experiments. Neutrinos from different sources can be used to search for oscillations: solar neutrinos, neutrinos produced in the interaction of cosmic rays with the atmosphere and artificially produced neutrinos from nuclear reactors and particle accelerators. The latter offer the possibility of choosing the relevant experimental features such as the flux flavour composition, the energy and the baseline distance from the source to the detector.This paper attempts to review the main accelerator experiments whichhave been performed and to outline the future projects. A brief introduction to the theory and phenomenology of neutrino oscillationsis given to help in understanding the scope, the design and the performance of the different experiments

    Similar works