research article journal article
Robust and coordinated tuning of power system stabiliser gains using sequential linear programming
- Publication date
- 1 January 2010
- Publisher
- MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND
Abstract
This study presents a linear programming (LP)-based multivariable root locus following technique for coordinating the gain settings of power system stabilisers (PSSs). The stabiliser robustness is accounted for in the design problem by simultaneously considering the state-space representations and multivariable root loci corresponding to different operating scenarios. The proposed technique computes a curve in the PSS gain parameter space such that when the PSS gains move along this curve to their optimal values, the branches of the corresponding multivariable root loci terminate at satisfactory points in the complex plane. The curve in the gain parameter space is computed via a linear program that successively minimises the Euclidean distance between the unsatisfactory and satisfactory eigenvalue locations. The design method is demonstrated on a 39-bus test system with 14 operating scenarios. A comparison is carried out between the coordination results of two PSS structures, one involving two phase-lead blocks and the other comprised of two phase-lead blocks and a phase-lag block. © 2010 The Institution of Engineering and Technology.Ben-Tal A, 2001, LECT MODERN CONVEX O; Cai LJ, 2005, IEEE T POWER SYST, V20, P294, DOI 10.1109-TPWRS.2004.841177; CIGRE Task Force, 2000, 380216 CIGRE TASK FO; daCruz JJ, 1997, INT J ELEC POWER, V19, P519, DOI 10.1016-S0142-0615(97)00023-9; do Bomfim ALB, 2000, IEEE T POWER SYST, V15, P163, DOI 10.1109-59.852116; DOI A, 1984, IEEE T POWER AP SYST, V103, P1473, DOI 10.1109-TPAS.1984.318486; Ferraz J.C.R., 2001, IEEE POW ENG SOC WIN, V3, P1154; FERRAZ J.C.R., 2007, IEEE POW ENG SOC GEN, P1; FERRAZ JCR, 2004, IEEE PES POW SYST C, V2, P1164; GIBB WRG, 1991, MOVEMENT DISORD, V6, P2, DOI 10.1002-mds.870060103; GIBBARD MJ, 1988, IEE PROC-C, V135, P276; Kamwa I, 2005, IEEE T POWER SYST, V20, P903, DOI 10.1109-TPWRS.2005.846197; Kamwa I, 2000, IEEE T POWER SYST, V15, P1084, DOI 10.1109-59.871737; Kundur P., 1994, POWER SYSTEM STABILI; MARTINS N, 1999, IEEE PES SUMM M 18 2, V1, P58; Nagurka M. L., 1993, Transactions of the ASME. Journal of Dynamic Systems, Measurement and Control, V115; Pai M. A., 1989, ENERGY FUNCTION ANAL; Pal B., 2005, ROBUST CONTROL POWER; Pal BC, 2002, IEE P-GENER TRANSM D, V149, P739, DOI 10.1049-ip-gtd:20020659; Pal BC, 2000, IEEE T POWER SYST, V15, P356, DOI 10.1109-59.852144; Pourbeik P, 1998, IEEE T POWER SYST, V13, P473, DOI 10.1109-59.667371; ROGERS G, POWER SYSTEM TOOLBOX; Rogers G., 2000, POWER SYSTEM OSCILLA; Rommes J, 2006, IEEE T POWER SYST, V21, P1471, DOI 10.1109-TPWRS.2006.881154; Rommes J, 2006, IEEE T POWER SYST, V21, P1218, DOI 10.1109-TPWRS.2006.876671; Rommes J, 2010, IEEE T POWER SYST, V25, P929, DOI 10.1109-TPWRS.2009.2036822; Sturm JF, 1999, OPTIM METHOD SOFTW, V11-2, P625, DOI 10.1080-10556789908805766; XU XM, 1986, 25 IEEE C DIC CONTR, V25, P713; Zanetta LC, 2005, IEEE T POWER SYST, V20, P895, DOI 10.1109-TPWRS.2005.84611119191