research

A Markov growth process for Macdonald's distribution on reduced words

Abstract

We give an algorithmic-bijective proof of Macdonald's reduced word identity in the theory of Schubert polynomials, in the special case where the permutation is dominant. Our bijection uses a novel application of David Little's generalized bumping algorithm. We also describe a Markov growth process for an associated probability distribution on reduced words. Our growth process can be implemented efficiently on a computer and allows for fast sampling of reduced words. We also discuss various partial generalizations and links to Little's work on the RSK algorithm.Comment: 16 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions