research

Galaxy evolution across the optical emission-line diagnostic diagrams?

Abstract

The discovery of the M-sigma relation, the local galaxy bimodality, and the link between black-hole and host-galaxy properties, have raised the question whether AGN play a role in galaxy evolution. Several theoretical models implement AGN feedback to explain the observed galaxy luminosity function, and possibly the color and morphological transformation of spiral galaxies into passive ellipticals. To understand the importance of AGN feedback, a study of the AGN populations in the radio-optical domain is crucial. A mass sequence linking star-forming galaxies and AGN has been already noted in previous works, and it is now investigated as possible evolutionary sequence. We observed a sample of 119 intermediate-redshift (0.04<z<0.4) SDSS-FIRST radio emitters with the Effelsberg 100-m telescope at 4.85 and 10.45 GHz and obtained spectral indices. We find indications of spectral index flattening in high-metallicity star-forming galaxies, composite galaxies, and Seyferts. This "flattening sequence" along the [NII]-based emission-line diagnostic diagram is consistent with the hardening of galaxy ionizing field, due to nuclear activity. After combining our data with FIRST measurements at 1.4 GHz, we find that the three-point radio spectra of Seyferts and LINERs show substantial differences, attributable to small radio core components and larger (arcsecond sized) jet/lobe components, respectively. A visual inspection of FIRST images seems to confirm this hypothesis. Galaxies along this sequence are hypothesized to be transitioning from the active star-forming galaxies (blue cloud) to the passive elliptical galaxies (red sequence). This supports the suggestion that AGN play a role in shutting down star-formation, and allow the transition from one galaxy class to the other.Comment: 20 pages, 19 figures, accepted for publication in A&

    Similar works