research

Further refinements of the Cauchy-Schwarz inequality for matrices

Abstract

Let A,BA, B and XX be n×nn\times n matrices such that A,BA, B are positive semidefinite. We present some refinements of the matrix Cauchy-Schwarz inequality by using some integration techniques and various refinements of the Hermite--Hadamard inequality. In particular, we establish the inequality \begin{align*} |||\,|A^{1\over2}XB^{1\over2}|^r|||^2&\leq|||\,|A^{t}XB^{1-s}|^r||| \,\,\,|||\,|A^{1-t}XB^{s}|^r|||\\& \leq\max \{|||\,|AX|^r||| \,\,\,|||\,|XB|^r|||,|||\,|AXB|^r||| \,\,\,|||\,|X|^r|||\}, \end{align*} where s,t[0,1]s,t\in[0,1] and r0r\geq0

    Similar works

    Full text

    thumbnail-image

    Available Versions