research

Dynamic message-passing approach for kinetic spin models with reversible dynamics

Abstract

A method to approximately close the dynamic cavity equations for synchronous reversible dynamics on a locally tree-like topology is presented. The method builds on (a)(a) a graph expansion to eliminate loops from the normalizations of each step in the dynamics, and (b)(b) an assumption that a set of auxilary probability distributions on histories of pairs of spins mainly have dependencies that are local in time. The closure is then effectuated by projecting these probability distributions on nn-step Markov processes. The method is shown in detail on the level of ordinary Markov processes (n=1n=1), and outlined for higher-order approximations (n>1n>1). Numerical validations of the technique are provided for the reconstruction of the transient and equilibrium dynamics of the kinetic Ising model on a random graph with arbitrary connectivity symmetry.Comment: 6 pages, 4 figure

    Similar works