Soft porous crystals present a challenge to molecular dynamics simulations
with flexible size and shape of the simulation cell (i.e., in the NPT
ensemble), since their framework responds very sensitively to small external
stimuli. Hence, all interactions have to be described very accurately in order
to obtain correct equilibrium structures. Here, we report a methodological
study on the nanoporous metal-organic framework MIL-53(Ga), which undergoes a
large-amplitude transition between a narrow- and a large-pore phase upon a
change in temperature. Since this system has not been investigated by density
functional theory (DFT)-based NPT simulations so far, we carefully check the
convergence of the stress tensor with respect to computational parameters.
Furthermore, we demonstrate the importance of dispersion interactions and test
two different ways of incorporating them into the DFT framework. As a result,
we propose two computational schemes which describe accurately the narrow- and
the large-pore phase of the material, respectively. These schemes can be used
in future work on the delicate interplay between adsorption in the nanopores
and structural flexibility of the host material