research

Smooth Entropy Bounds on One-Shot Quantum State Redistribution

Abstract

In quantum state redistribution as introduced in [Luo and Devetak (2009)] and [Devetak and Yard (2008)], there are four systems of interest: the AA system held by Alice, the BB system held by Bob, the CC system that is to be transmitted from Alice to Bob, and the RR system that holds a purification of the state in the ABCABC registers. We give upper and lower bounds on the amount of quantum communication and entanglement required to perform the task of quantum state redistribution in a one-shot setting. Our bounds are in terms of the smooth conditional min- and max-entropy, and the smooth max-information. The protocol for the upper bound has a clear structure, building on the work [Oppenheim (2008)]: it decomposes the quantum state redistribution task into two simpler quantum state merging tasks by introducing a coherent relay. In the independent and identical (iid) asymptotic limit our bounds for the quantum communication cost converge to the quantum conditional mutual information I(C:RB)I(C:R|B), and our bounds for the total cost converge to the conditional entropy H(CB)H(C|B). This yields an alternative proof of optimality of these rates for quantum state redistribution in the iid asymptotic limit. In particular, we obtain a strong converse for quantum state redistribution, which even holds when allowing for feedback.Comment: v3: 29 pages, 1 figure, extended strong converse discussio

    Similar works