research

Heights and the Specialization Map for Families of Elliptic Curves over P^n

Abstract

For nβ‰₯2n\geq 2, let K=Qβ€Ύ(Pn)=Qβ€Ύ(T1,…,Tn)K=\overline{\mathbb{Q}}(\mathbb{P}^n)=\overline{\mathbb{Q}}(T_1, \ldots, T_n). Let E/KE/K be the elliptic curve defined by a minimal Weiestrass equation y2=x3+Ax+By^2=x^3+Ax+B, with A,B∈Qβ€Ύ[T1,…,Tn]A,B \in \overline{\mathbb{Q}}[T_1, \ldots, T_n]. There's a canonical height h^E\hat{h}_{E} on E(K)E(K) induced by the divisor (O)(O), where OO is the zero element of E(K)E(K). On the other hand, for each smooth hypersurface Ξ“\Gamma in Pn\mathbb{P}^n such that the reduction mod Ξ“\Gamma of EE, EΞ“/Qβ€Ύ(Ξ“)E_{\Gamma} / \overline{\mathbb{Q}}(\Gamma) is an elliptic curve with the zero element OΞ“O_\Gamma, there is also a canonical height h^EΞ“\hat{h}_{E_{\Gamma}} on EΞ“(Qβ€Ύ(Ξ“))E_{\Gamma}(\overline{\mathbb{Q}}(\Gamma)) that is induced by (OΞ“) (O_\Gamma). We prove that for any P∈E(K)P \in E(K), the equality h^EΞ“(PΞ“)/deg⁑Γ=h^E(P)\hat{h}_{E_{\Gamma}}(P_\Gamma)/ \deg \Gamma =\hat{h}_{E}(P) holds for almost all hypersurfaces in Pn\mathbb{P}^n. As a consequence, we show that for infinitely many t∈Pn(Qβ€Ύ)t \in \mathbb{P}^n(\overline{\mathbb{Q}}), the specialization map Οƒt:E(K)β†’Et(Qβ€Ύ)\sigma_t : E(K) \rightarrow E_t(\overline{\mathbb{Q}}) is injective.Comment: updated versio

    Similar works

    Full text

    thumbnail-image

    Available Versions