research

Elliptic equations involving general subcritical source nonlinearity and measures

Abstract

In this article, we study the existence of positive solutions to elliptic equation (E1) (Δ)αu=g(u)+σνinΩ,(-\Delta)^\alpha u=g(u)+\sigma\nu \quad{\rm in}\quad \Omega, subject to the condition (E2) u=ϱμonΩ  if α=1or  in  Ωc  if α(0,1),u=\varrho\mu\quad {\rm on}\quad \partial\Omega\ \ {\rm if}\ \alpha=1\qquad {\rm or\ \ in}\ \ \Omega^c \ \ {\rm if}\ \alpha\in(0,1), where σ,ϱ0\sigma,\varrho\ge0, Ω\Omega is an open bounded C2C^2 domain in RN\mathbb{R}^N, (Δ)α(-\Delta)^\alpha denotes the fractional Laplacian with α(0,1)\alpha\in(0,1) or Laplacian operator if α=1\alpha=1, ν,μ\nu,\mu are suitable Radon measures and g:R+R+g:\mathbb{R}_+\mapsto\mathbb{R}_+ is a continuous function. We introduce an approach to obtain weak solutions for problem (E1)-(E2) when gg is integral subcritical and σ,ϱ0\sigma,\varrho\ge0 small enough

    Similar works