We aim to provide table answers to keyword queries against knowledge bases.
For queries referring to multiple entities, like "Washington cities population"
and "Mel Gibson movies", it is better to represent each relevant answer as a
table which aggregates a set of entities or entity-joins within the same table
scheme or pattern. In this paper, we study how to find highly relevant patterns
in a knowledge base for user-given keyword queries to compose table answers. A
knowledge base can be modeled as a directed graph called knowledge graph, where
nodes represent entities in the knowledge base and edges represent the
relationships among them. Each node/edge is labeled with type and text. A
pattern is an aggregation of subtrees which contain all keywords in the texts
and have the same structure and types on node/edges. We propose efficient
algorithms to find patterns that are relevant to the query for a class of
scoring functions. We show the hardness of the problem in theory, and propose
path-based indexes that are affordable in memory. Two query-processing
algorithms are proposed: one is fast in practice for small queries (with small
patterns as answers) by utilizing the indexes; and the other one is better in
theory, with running time linear in the sizes of indexes and answers, which can
handle large queries better. We also conduct extensive experimental study to
compare our approaches with a naive adaption of known techniques.Comment: VLDB 201