In order to utilize identification to the best extent, we need robust and
fast algorithms and systems to process the data. Having palmprint as a reliable
and unique characteristic of every person, we extract and use its features
based on its geometry, lines and angles. There are countless ways to define
measures for the recognition task. To analyze a new point of view, we extracted
textural features and used them for palmprint recognition. Co-occurrence matrix
can be used for textural feature extraction. As classifiers, we have used the
minimum distance classifier (MDC) and the weighted majority voting system
(WMV). The proposed method is tested on a well-known multispectral palmprint
dataset of 6000 samples and an accuracy rate of 99.96-100% is obtained for most
scenarios which outperforms all previous works in multispectral palmprint
recognition.Comment: 5 pages, Published in IEEE Signal Processing in Medicine and Biology
Symposium 201