This paper presents the first measurement of the radio luminosity function of
'jet-mode' (radiatively-inefficient) radio-AGN out to z=1, in order to
investigate the cosmic evolution of radio-AGN feedback. Eight radio source
samples are combined to produce a catalogue of 211 radio-loud AGN with
0.5<z<1.0, which are spectroscopically classified into jet-mode and
radiative-mode (radiatively-efficient) AGN classes. Comparing with large
samples of local radio-AGN from the Sloan Digital Sky Survey, the cosmic
evolution of the radio luminosity function of each radio-AGN class is
independently derived. Radiative-mode radio-AGN show an order of magnitude
increase in space density out to z~1 at all luminosities, consistent with these
AGN being fuelled by cold gas. In contrast, the space density of jet-mode
radio-AGN decreases with increasing redshift at low radio luminosities (L_1.4 <
1e24 W/Hz) but increases at higher radio luminosities. Simple models are
developed to explain the observed evolution. In the best-fitting models, the
characteristic space density of jet-mode AGN declines with redshift in
accordance with the declining space density of massive quiescent galaxies,
which fuel them via cooling of gas in their hot haloes. A time delay of 1.5-2
Gyr may be present between the quenching of star formation and the onset of
jet-mode radio-AGN activity. The behaviour at higher radio luminosities can be
explained either by an increasing characteristic luminosity of jet-mode
radio-AGN activity with redshift (roughly as (1+z) cubed) or if the jet-mode
radio-AGN population also includes some contribution of cold-gas-fuelled
sources seen at a time when their accretion rate was low. Higher redshifts
measurements would distinguish between these possibilities.Comment: Accepted for publication in MNRA