research

Dynamical Anomalous Subvarieties: Structure and Bounded Height Theorems

Abstract

According to Medvedev and Scanlon, a polynomial f(x)Qˉ[x]f(x)\in \bar{\mathbb Q}[x] of degree d2d\geq 2 is called disintegrated if it is not linearly conjugate to xdx^d or ±Cd(x)\pm C_d(x) (where Cd(x)C_d(x) is the Chebyshev polynomial of degree dd). Let nNn\in\mathbb{N}, let f1,,fnQˉ[x]f_1,\ldots,f_n\in \bar{\mathbb Q}[x] be disintegrated polynomials of degrees at least 2, and let φ=f1××fn\varphi=f_1\times\ldots\times f_n be the corresponding coordinate-wise self-map of (P1)n({\mathbb P}^1)^n. Let XX be an irreducible subvariety of (P1)n({\mathbb P}^1)^n of dimension rr defined over Qˉ\bar{\mathbb Q}. We define the \emph{φ\varphi-anomalous} locus of XX which is related to the \emph{φ\varphi-periodic} subvarieties of (P1)n({\mathbb P}^1)^n. We prove that the φ\varphi-anomalous locus of XX is Zariski closed; this is a dynamical analogue of a theorem of Bombieri, Masser, and Zannier \cite{BMZ07}. We also prove that the points in the intersection of XX with the union of all irreducible φ\varphi-periodic subvarieties of (P1)n({\mathbb P}^1)^n of codimension rr have bounded height outside the φ\varphi-anomalous locus of XX; this is a dynamical analogue of Habegger's theorem \cite{Habegger09} which was previously conjectured in \cite{BMZ07}. The slightly more general self-maps φ=f1××fn\varphi=f_1\times\ldots\times f_n where each fiQˉ(x)f_i\in \bar{\mathbb Q}(x) is a disintegrated rational map are also treated at the end of the paper.Comment: Minor mistakes corrected, slight reorganizatio

    Similar works

    Full text

    thumbnail-image

    Available Versions