The motivation of this work is to define cohomology classes in the space of
knots that are both easy to find and to evaluate, by reducing the problem to
simple linear algebra. We achieve this goal by defining a combinatorial graded
cochain complex, such that the elements of an explicit submodule in the
cohomology define algebraic intersections with some "geometrically simple"
strata in the space of knots. Such strata are endowed with explicit
co-orientations, that are canonical in some sense. The combinatorial tools
involved are natural generalisations (degeneracies) of usual methods using
arrow diagrams.Comment: 20p. 9 fig