We propose here to interpret and model peculiar plant morphologies (cushions,
tussocks) observed in the Andean altiplano as localized structures. Such
structures resulting in a patchy, aperiodic aspect of the vegetation cover are
hypothesized to self-organize thanks to the interplay between facilitation and
competition processes occurring at the scale of basic plant components
biologically referred to as 'ramets'. (Ramets are often of clonal origin.) To
verify this interpretation, we applied a simple, fairly generic model (one
integro-differential equation) emphasizing via Gaussian kernels non-local
facilitative and competitive feedbacks of the vegetation biomass density on its
own dynamics. We show that under realistic assumptions and parameter values
relating to ramet scale, the model can reproduce some macroscopic features of
the observed systems of patches and predict values for the inter-patch distance
that match the distances encountered in the reference area (Sajama National
Park in Bolivia). Prediction of the model can be confronted in the future to
data on vegetation patterns along environmental gradients as to anticipate the
possible effect of global change on those vegetation systems experiencing
constraining environmental conditions.Comment: 14 pages, 6figure