Multiplicity correlation measurements provide insight into the dynamics of
high energy collisions. Models describing these collisions need these
correlation measurements to tune the strengths of the underlying QCD processes
which influence all observables. Detectors, however, often possess limited
coverage or reduced efficiency that influence correlation measurements in
obscure ways. In this paper, the effects of non-uniform detection acceptance
and efficiency on the measurement of multiplicity correlations between two
distinct detector regions (termed forward-backward correlations) are derived.
An analysis method with such effects built-in is developed and subsequently
verified using different event generators. The resulting method accounts for
acceptance and efficiency in a model independent manner with high accuracy
thereby shedding light on the relative contributions of the underlying
processes to particle production.Comment: 28 pages, 13 figures. Updated for having pseudorapidity dependent
efficiency gradient