research

The monotonicity and convexity of a function involving digamma one and their applications

Abstract

Let L(x,a)\mathcal{L}(x,a) be defined on (βˆ’1,∞)Γ—(4/15,∞)\left( -1,\infty \right) \times \left( 4/15,\infty \right) or (0,∞)Γ—(1/15,∞)\left( 0,\infty \right) \times \left( 1/15,\infty \right) by the formula% \begin{equation*} \mathcal{L}(x,a)=\tfrac{1}{90a^{2}+2}\ln \left( x^{2}+x+\tfrac{3a+1}{3}% \right) +\tfrac{45a^{2}}{90a^{2}+2}\ln \left( x^{2}+x+\allowbreak \tfrac{% 15a-1}{45a}\right) . \end{equation*} We investigate the monotonicity and convexity of the function xβ†’Fa(x)=ψ(x+1)βˆ’L(x,a)x\rightarrow F_{a}\left( x\right) =\psi \left( x+1\right) -\mathcal{L}(x,a), where ψ\psi denotes the Psi function. And, we determine the best parameter aa such that the inequality \psi \left( x+1\right) \right) \mathcal{L}% (x,a) holds for x∈(βˆ’1,∞)x\in \left( -1,\infty \right) or (0,∞)\left( 0,\infty \right) , and then, some new and very high accurate sharp bounds for pis function and harmonic numbers are presented. As applications, we construct a sequence (ln(a))\left( l_{n}\left( a\right) \right) defined by ln(a)=Hnβˆ’L(n,a)l_{n}\left( a\right) =H_{n}-\mathcal{L}\left( n,a\right) , which gives extremely accurate values for Ξ³\gamma .Comment: 20 page

    Similar works

    Full text

    thumbnail-image

    Available Versions