research

A Unifying Hierarchy of Valuations with Complements and Substitutes

Abstract

We introduce a new hierarchy over monotone set functions, that we refer to as MPH\mathcal{MPH} (Maximum over Positive Hypergraphs). Levels of the hierarchy correspond to the degree of complementarity in a given function. The highest level of the hierarchy, MPH\mathcal{MPH}-mm (where mm is the total number of items) captures all monotone functions. The lowest level, MPH\mathcal{MPH}-11, captures all monotone submodular functions, and more generally, the class of functions known as XOS\mathcal{XOS}. Every monotone function that has a positive hypergraph representation of rank kk (in the sense defined by Abraham, Babaioff, Dughmi and Roughgarden [EC 2012]) is in MPH\mathcal{MPH}-kk. Every monotone function that has supermodular degree kk (in the sense defined by Feige and Izsak [ITCS 2013]) is in MPH\mathcal{MPH}-(k+1)(k+1). In both cases, the converse direction does not hold, even in an approximate sense. We present additional results that demonstrate the expressiveness power of MPH\mathcal{MPH}-kk. One can obtain good approximation ratios for some natural optimization problems, provided that functions are required to lie in low levels of the MPH\mathcal{MPH} hierarchy. We present two such applications. One shows that the maximum welfare problem can be approximated within a ratio of k+1k+1 if all players hold valuation functions in MPH\mathcal{MPH}-kk. The other is an upper bound of 2k2k on the price of anarchy of simultaneous first price auctions. Being in MPH\mathcal{MPH}-kk can be shown to involve two requirements -- one is monotonicity and the other is a certain requirement that we refer to as PLE\mathcal{PLE} (Positive Lower Envelope). Removing the monotonicity requirement, one obtains the PLE\mathcal{PLE} hierarchy over all non-negative set functions (whether monotone or not), which can be fertile ground for further research

    Similar works