We study competition of two spreading colors starting from single sources on
the configuration model with i.i.d. degrees following a power-law distribution
with exponent tau in (2,3). In this model two colors spread with a fixed but
not necessarily equal speed on the unweighted random graph. We show that if the
speeds are not equal, then the faster color paints almost all vertices, while
the slower color can paint only a random subpolynomial fraction of the
vertices. We investigate the case when the speeds are equal and typical
distances in a follow-up paper.Comment: 44 pages, 9 picture