research

Delta-shocks and vacuums in zero-pressure gas dynamics by the flux approximation

Abstract

In this paper, firstly, by solving the Riemann problem of the zero-pressure flow in gas dynamics with a flux approximation, we construct parameterized delta-shock and constant density solutions, then we show that, as the flux perturbation vanishes, they converge to the delta-shock and vacuum state solutions of the zero-pressure flow, respectively. Secondly, we solve the Riemann problem of the Euler equations of isentropic gas dynamics with a double parameter flux approximation including pressure. Further we rigorously prove that, as the two-parameter flux perturbation vanishes, any Riemann solution containing two shock waves tends to a delta shock solution to the zero-pressure flow; any Riemann solution containing two rarefaction waves tends to a two-contact-discontinuity solution to the zero-pressure flow and the nonvacuum intermediate state in between tends to a vacuum state.Comment: 17 pages, 4 figures, accepted for publication in SCIENCE CHINA Mathematic

    Similar works

    Full text

    thumbnail-image

    Available Versions