research

The quark mass gap in strong magnetic fields

Abstract

Quarks in strong magnetic fields (|eB|>>Lambda_QCD^2 ~ 0.04 GeV^2) acquire enhanced infrared phase space proportional to |eB|. Accordingly they provide larger chiral condensates and stronger backreactions to the gluon dynamics. Confronting theories with lattice data at various values of |eB|, one can test theoretical ideas as well as validity of various approximations, domain of applicability of the effective models, and so on. The particularly interesting findings on the lattice are inverse magnetic catalysis and linear growth of the chiral condensate as a function of |eB|, which pose theoretical challenges. In this talk we propose a scenario to explain both phenomena, claiming that the quark mass gap should stay at around ~ Lambda_QCD, instead of ~|eB|^{1/2} which has been supposed from dimensional arguments and/or effective model calculations. The contrast between infrared and ultraviolet behaviors of the interaction is a key ingredient to obtain the mass gap of ~Lambda_QCD.Comment: 4 pages, proceedings of the XXIV Quark Matter conference, May 19-24 2014, Darmstadt (Germany

    Similar works

    Full text

    thumbnail-image