research

The jump set under geometric regularisation. Part 1: Basic technique and first-order denoising

Abstract

Let u \in \mbox{BV}(\Omega) solve the total variation denoising problem with L2L^2-squared fidelity and data ff. Caselles et al. [Multiscale Model. Simul. 6 (2008), 879--894] have shown the containment Hmβˆ’1(Juβˆ–Jf)=0\mathcal{H}^{m-1}(J_u \setminus J_f)=0 of the jump set JuJ_u of uu in that of ff. Their proof unfortunately depends heavily on the co-area formula, as do many results in this area, and as such is not directly extensible to higher-order, curvature-based, and other advanced geometric regularisers, such as total generalised variation (TGV) and Euler's elastica. These have received increased attention in recent times due to their better practical regularisation properties compared to conventional total variation or wavelets. We prove analogous jump set containment properties for a general class of regularisers. We do this with novel Lipschitz transformation techniques, and do not require the co-area formula. In the present Part 1 we demonstrate the general technique on first-order regularisers, while in Part 2 we will extend it to higher-order regularisers. In particular, we concentrate in this part on TV and, as a novelty, Huber-regularised TV. We also demonstrate that the technique would apply to non-convex TV models as well as the Perona-Malik anisotropic diffusion, if these approaches were well-posed to begin with

    Similar works

    Full text

    thumbnail-image

    Available Versions