research

The Arason invariant of orthogonal involutions of degree 12 and 8, and quaternionic subgroups of the Brauer group

Abstract

Using the Rost invariant for torsors under Spin groups one may define an analogue of the Arason invariant for certain hermitian forms and orthogonal involutions. We calculate this invariant explicitly in various cases, and use it to associate to every orthogonal involution with trivial discriminant and trivial Clifford invariant over a central simple algebra of even co-index a cohomology class f3f_3 of degree 3 with μ2\mu_2 coefficients. This invariant f3f_3 is the double of any representative of the Arason invariant; it vanishes when the algebra has degree at most 10, and also when there is a quadratic extension of the center that simultaneously splits the algebra and makes the involution hyperbolic. The paper provides a detailed study of both invariants, with particular attention to the degree 12 case, and to the relation with the existence of a quadratic splitting field.Comment: A mistake pointed out by A. Sivatski in Section 5.3 has been corrected in the new version of this preprin

    Similar works

    Full text

    thumbnail-image

    Available Versions