Root systems can influence the dynamics of evapotranspiration of water out of
a porous medium. The coupling of evapotranspiration remains a key aspect
affecting overall root behavior. Predicting the evapotranspiration curve in the
presence of roots helps keep track of the amount of water that remains in the
porous medium. Using a controlled visual set-up of a 2D model soil system
consisting of monodisperse glass beads, we first perform experiments on actual
roots grown in partially saturated systems under different relative humidity
conditions. We record parameters such as the total mass loss in the medium and
the resulting position of the receding fronts and use these experimental
results to develop a simple analytical model that predicts the position of the
evaporating front as a function of time as well as the total amount of water
that is lost from the medium due to the combined effects of evaporation and
transpiration. The model is based on fundamental principles of evaporation flux
and includes empirical assumptions on the quantity of stoma in the leaves and
the transition time between regime 1 and regime 2. The model also underscores
the importance of a much prolonged root life as long as the root is exposed to
a partially saturated zone composed of a mixture of air and water. Comparison
between the model and experimental results shows good prediction of the
position of the evaporating front as well as the total mass loss from
evapotranspiration in the presence of real root systems. These results provide
additional understanding of both complex evaporation phenomenon and its
influence on root mechanisms.Comment: 10 pages, 6 figure