research

Quotients of Strongly Proper Forcings and Guessing Models

Abstract

We prove that a wide class of strongly proper forcing posets have quotients with strong properties. Specifically, we prove that quotients of forcing posets which have simple universal strongly generic conditions on a stationary set of models by certain nice regular suborders satisfy the ω1\omega_1-approximation property. We prove that the existence of stationarily many ω1\omega_1-guessing models in Pω2(H(θ))P_{\omega_2}(H(\theta)), for sufficiently large cardinals θ\theta, is consistent with the continuum being arbitrarily large, solving a problem of Viale and Weiss

    Similar works

    Full text

    thumbnail-image

    Available Versions