We introduce the concept of quantum field tomography, the efficient and
reliable reconstruction of unknown quantum fields based on data of correlation
functions. At the basis of the analysis is the concept of continuous matrix
product states, a complete set of variational states grasping states in quantum
field theory. We innovate a practical method, making use of and developing
tools in estimation theory used in the context of compressed sensing such as
Prony methods and matrix pencils, allowing us to faithfully reconstruct quantum
field states based on low-order correlation functions. In the absence of a
phase reference, we highlight how specific higher order correlation functions
can still be predicted. We exemplify the functioning of the approach by
reconstructing randomised continuous matrix product states from their
correlation data and study the robustness of the reconstruction for different
noise models. We also apply the method to data generated by simulations based
on continuous matrix product states and using the time-dependent variational
principle. The presented approach is expected to open up a new window into
experimentally studying continuous quantum systems, such as encountered in
experiments with ultra-cold atoms on top of atom chips. By virtue of the
analogy with the input-output formalism in quantum optics, it also allows for
studying open quantum systems.Comment: 31 pages, 5 figures, minor change