research

On Maximum Signless Laplacian Estrada Indices of Graphs with Given Parameters

Abstract

Signless Laplacian Estrada index of a graph GG, defined as SLEE(G)=βˆ‘i=1neqiSLEE(G)=\sum^{n}_{i=1}e^{q_i}, where q1,q2,⋯ ,qnq_1, q_2, \cdots, q_n are the eigenvalues of the matrix Q(G)=D(G)+A(G)\mathbf{Q}(G)=\mathbf{D}(G)+\mathbf{A}(G). We determine the unique graphs with maximum signless Laplacian Estrada indices among the set of graphs with given number of cut edges, pendent vertices, (vertex) connectivity and edge connectivity.Comment: 14 pages, 3 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions