The Korean Microlensing Telescope Network (KMTNet) will consist of three 1.6m
telescopes each with a 4 deg^{2} field of view (FoV) and will be dedicated to
monitoring the Galactic Bulge to detect exoplanets via gravitational
microlensing. KMTNet's combination of aperture size, FoV, cadence, and
longitudinal coverage will provide a unique opportunity to probe exoplanet
demographics in an unbiased way. Here we present simulations that optimize the
observing strategy for, and predict the planetary yields of, KMTNet. We find
preferences for four target fields located in the central Bulge and an exposure
time of t_{exp} = 120s, leading to the detection of ~2,200 microlensing events
per year. We estimate the planet detection rates for planets with mass and
separation across the ranges 0.1 <= M_{p}/M_{Earth} <= 1000 and 0.4 <= a/AU <=
16, respectively. Normalizing these rates to the cool-planet mass function of
Cassan (2012), we predict KMTNet will be approximately uniformly sensitive to
planets with mass 5 <= M_{p}/M_{Earth} <= 1000 and will detect ~20 planets per
year per dex in mass across that range. For lower-mass planets with mass 0.1 <=
M_{p}/M_{Earth} < 5, we predict KMTNet will detect ~10 planets per year. We
also compute the yields KMTNet will obtain for free-floating planets (FFPs) and
predict KMTNet will detect ~1 Earth-mass FFP per year, assuming an underlying
population of one such planet per star in the Galaxy. Lastly, we investigate
the dependence of these detection rates on the number of observatories, the
photometric precision limit, and optimistic assumptions regarding seeing,
throughput, and flux measurement uncertainties.Comment: 29 pages, 31 figures, submitted to ApJ. For a brief video explaining
the key results of this paper, please visit:
https://www.youtube.com/watch?v=e5rWVjiO26