We define a family of maps on lattice paths, called sweep maps, that assign
levels to each step in the path and sort steps according to their level.
Surprisingly, although sweep maps act by sorting, they appear to be bijective
in general. The sweep maps give concise combinatorial formulas for the
q,t-Catalan numbers, the higher q,t-Catalan numbers, the q,t-square numbers,
and many more general polynomials connected to the nabla operator and rational
Catalan combinatorics. We prove that many algorithms that have appeared in the
literature (including maps studied by Andrews, Egge, Gorsky, Haglund, Hanusa,
Jones, Killpatrick, Krattenthaler, Kremer, Orsina, Mazin, Papi, Vaille, and the
present authors) are all special cases of the sweep maps or their inverses. The
sweep maps provide a very simple unifying framework for understanding all of
these algorithms. We explain how inversion of the sweep map (which is an open
problem in general) can be solved in known special cases by finding a "bounce
path" for the lattice paths under consideration. We also define a generalized
sweep map acting on words over arbitrary alphabets with arbitrary weights,
which is also conjectured to be bijective.Comment: 21 pages; full version of FPSAC 2014 extended abstrac