The tumbling of a rigid rod in a shear flow is analyzed in the high viscosity
limit. Following Burgers, the Master Equation is derived for the probability
distribution of the orientation of the rod. The equation contains one
dimensionless number, the Weissenberg number, which is the ratio of the shear
rate and the orientational diffusion constant. The equation is solved for the
stationary state distribution for arbitrary Weissenberg numbers, in particular
for the limit of high Weissenberg numbers. The stationary state gives an
interesting flow pattern for the orientation of the rod, showing the interplay
between flow due to the driving shear force and diffusion due to the random
thermal forces of the fluid. The average tumbling time and tumbling frequency
are calculated as a function of the Weissenberg number. A simple cross-over
function is proposed which covers the whole regime from small to large
Weissenberg numbers.Comment: 22 pages, 9 figure