We study a numerical method for convection diffusion equations, in the regime
of small viscosity. It can be described as an exponentially fitted conforming
Petrov-Galerkin method. We identify norms for which we have both continuity and
an inf-sup condition, which are uniform in mesh-width and viscosity, up to a
logarithm, as long as the viscosity is smaller than the mesh-width or the
crosswind diffusion is smaller than the streamline diffusion. The analysis
allows for the formation of a boundary layer.Comment: v1: 18 pages. 2 figures. v2: 22 pages. Numerous details added and
completely rewritten final proof. 8 pages appendix with old proo