It is customary to assess the reliability of underground oil and gas
pipelines in the presence of excessive loading and corrosion effects to ensure
a leak-free transport of hazardous materials. The main idea behind this
reliability analysis is to model the given pipeline system as a Reliability
Block Diagram (RBD) of segments such that the reliability of an individual
pipeline segment can be represented by a random variable. Traditionally,
computer simulation is used to perform this reliability analysis but it
provides approximate results and requires an enormous amount of CPU time for
attaining reasonable estimates. Due to its approximate nature, simulation is
not very suitable for analyzing safety-critical systems like oil and gas
pipelines, where even minor analysis flaws may result in catastrophic
consequences. As an accurate alternative, we propose to use a
higher-order-logic theorem prover (HOL) for the reliability analysis of
pipelines. As a first step towards this idea, this paper provides a
higher-order-logic formalization of reliability and the series RBD using the
HOL theorem prover. For illustration, we present the formal analysis of a
simple pipeline that can be modeled as a series RBD of segments with
exponentially distributed failure times.Comment: 15 page