Hyper-minimization is a state reduction technique that allows a finite change
in the semantics. The theory for hyper-minimization of deterministic weighted
tree automata is provided. The presence of weights slightly complicates the
situation in comparison to the unweighted case. In addition, the first
hyper-minimization algorithm for deterministic weighted tree automata, weighted
over commutative semifields, is provided together with some implementation
remarks that enable an efficient implementation. In fact, the same run-time O(m
log n) as in the unweighted case is obtained, where m is the size of the
deterministic weighted tree automaton and n is its number of states.Comment: In Proceedings AFL 2014, arXiv:1405.527