research

Factorizations of Matrices Over Projective-free Rings

Abstract

An element of a ring RR is called strongly J#J^{\#}-clean provided that it can be written as the sum of an idempotent and an element in J#(R)J^{\#}(R) that commute. We characterize, in this article, the strongly J#J^{\#}-cleanness of matrices over projective-free rings. These extend many known results on strongly clean matrices over commutative local rings

    Similar works

    Full text

    thumbnail-image

    Available Versions