Maximum a posteriori (MAP) inference over discrete Markov random fields is a
fundamental task spanning a wide spectrum of real-world applications, which is
known to be NP-hard for general graphs. In this paper, we propose a novel
semidefinite relaxation formulation (referred to as SDR) to estimate the MAP
assignment. Algorithmically, we develop an accelerated variant of the
alternating direction method of multipliers (referred to as SDPAD-LR) that can
effectively exploit the special structure of the new relaxation. Encouragingly,
the proposed procedure allows solving SDR for large-scale problems, e.g.,
problems on a grid graph comprising hundreds of thousands of variables with
multiple states per node. Compared with prior SDP solvers, SDPAD-LR is capable
of attaining comparable accuracy while exhibiting remarkably improved
scalability, in contrast to the commonly held belief that semidefinite
relaxation can only been applied on small-scale MRF problems. We have evaluated
the performance of SDR on various benchmark datasets including OPENGM2 and PIC
in terms of both the quality of the solutions and computation time.
Experimental results demonstrate that for a broad class of problems, SDPAD-LR
outperforms state-of-the-art algorithms in producing better MAP assignment in
an efficient manner.Comment: accepted to International Conference on Machine Learning (ICML 2014