research

A Reduced Latency List Decoding Algorithm for Polar Codes

Abstract

Long polar codes can achieve the capacity of arbitrary binary-input discrete memoryless channels under a low complexity successive cancelation (SC) decoding algorithm. But for polar codes with short and moderate code length, the decoding performance of the SC decoding algorithm is inferior. The cyclic redundancy check (CRC) aided successive cancelation list (SCL) decoding algorithm has better error performance than the SC decoding algorithm for short or moderate polar codes. However, the CRC aided SCL (CA-SCL) decoding algorithm still suffer from long decoding latency. In this paper, a reduced latency list decoding (RLLD) algorithm for polar codes is proposed. For the proposed RLLD algorithm, all rate-0 nodes and part of rate-1 nodes are decoded instantly without traversing the corresponding subtree. A list maximum-likelihood decoding (LMLD) algorithm is proposed to decode the maximum likelihood (ML) nodes and the remaining rate-1 nodes. Moreover, a simplified LMLD (SLMLD) algorithm is also proposed to reduce the computational complexity of the LMLD algorithm. Suppose a partial parallel list decoder architecture with list size L=4L=4 is used, for an (8192, 4096) polar code, the proposed RLLD algorithm can reduce the number of decoding clock cycles and decoding latency by 6.97 and 6.77 times, respectively.Comment: 7 pages, accepted by 2014 IEEE International Workshop on Signal Processing Systems (SiPS

    Similar works

    Full text

    thumbnail-image

    Available Versions