Detailed understanding of vibrational heat transfer mechanisms between solids
is essential for the efficient thermal engineering and control of
nanomaterials. We investigate the frequency dependence of anharmonic scattering
and interfacial thermal conduction between two acoustically mismatched solids
in planar contact by calculating the spectral decomposition of the heat current
flowing through an interface between two materials. The calculations are based
on analyzing the correlations of atomic vibrations using the data extracted
from non-equilibrium molecular dynamics simulations. Inelastic effects arising
from anharmonic interactions are shown to significantly facilitate heat
transfer between two mass-mismatched face-centered cubic lattices even at
frequencies exceeding the cut-off frequency of the heavier material due to (i)
enhanced dissipation of evanescent vibrational modes and (ii)
frequency-doubling and frequency-halving three-phonon energy transfer processes
at the interface. The results provide substantial insight into interfacial
energy transfer mechanisms especially at high temperatures, where inelastic
effects become important and other computational methods are ineffective.Comment: minor changes to v