research

Relativistic Mean-Field Hadronic Models under Nuclear Matter Constraints

Abstract

Relativistic mean-field (RMF) models have been widely used in the study of many hadronic frameworks because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation mechanism for nuclear matter, causality and, therefore, no problems related to superluminal speed of sound. With the aim of identifying the models which best satisfy well known properties of nuclear matter, we have analyzed 263263 parameterizations of seven different types of RMF models under three different sets of constraints related to symmetric nuclear matter, pure neutron matter, symmetry energy, and its derivatives. One of these (SET1) is formed of the same constraints used in a recent work [M. Dutra et al., Phys. Rev. C 85, 035201 (2012)] in which we analyzed 240240 Skyrme parameterizations. The results pointed to 22 models consistent with all constraints. By using another set of constraints, namely, SET2a, formed by the updated versions of the previous one, we found 44 models approved simultaneously. Finally, in the third set, named SET2b, in which the values of the constraints are more restrictive, we found 33 consistent models. Another interesting feature of our analysis is that the results change dramatically if we do not consider the constraint regarding the volume part of the isospin incompressibility (Kτ,vK_{\tau,\rm v}). In this case, we have 3535 approved models in SET2a and 3030 in SET2b.Comment: 63 pages, 3 figures and 9 tables. Version accepted for publication in PR

    Similar works