research

A Dual Diffusion Chamber for Observing Ice Crystal Growth on c-Axis Ice Needles

Abstract

We describe a dual diffusion chamber for observing ice crystal growth from water vapor in air as a function of temperature and supersaturation. In the first diffusion chamber, thin c-axis ice needles with tip radii ~100 nm are grown to lengths of ~2 mm. The needle crystals are then transported to a second diffusion chamber where the temperature and supersaturation can be independently controlled. By creating a linear temperature gradient in the second chamber, convection currents are suppressed and the supersaturation can be modeled with high accuracy. The c-axis needle crystals provide a unique starting geometry compared with other experiments, and the dual diffusion chamber allows rapid quantitative observations of ice growth behavior over a wide range of environmental conditions

    Similar works