The level-set method is a popular interface tracking method in two-phase flow
simulations. An often-cited reason for using it is that the method naturally
handles topological changes in the interface, e.g. merging drops, due to the
implicit formulation. It is also said that the interface curvature and normal
vectors are easily calculated. This last point is not, however, the case in the
moments during a topological change, as several authors have already pointed
out. Various methods have been employed to circumvent the problem. In this
paper, we present a new such method which retains the implicit level-set
representation of the surface and handles general interface configurations. It
is demonstrated that the method extends easily to 3D. The method is validated
on static interface configurations, and then applied to two-phase flow
simulations where the method outperforms the standard method and the results
agree well with experiments.Comment: 31 pages, 18 figure