We study distributed coding of compressed sensing (CS) measurements using
vector quantizer (VQ). We develop a distributed framework for realizing
optimized quantizer that enables encoding CS measurements of correlated sparse
sources followed by joint decoding at a fusion center. The optimality of VQ
encoder-decoder pairs is addressed by minimizing the sum of mean-square errors
between the sparse sources and their reconstruction vectors at the fusion
center. We derive a lower-bound on the end-to-end performance of the studied
distributed system, and propose a practical encoder-decoder design through an
iterative algorithm.Comment: 5 Pages, Accepted for presentation in ICASSP 201