research

Distributed Quantization for Compressed Sensing

Abstract

We study distributed coding of compressed sensing (CS) measurements using vector quantizer (VQ). We develop a distributed framework for realizing optimized quantizer that enables encoding CS measurements of correlated sparse sources followed by joint decoding at a fusion center. The optimality of VQ encoder-decoder pairs is addressed by minimizing the sum of mean-square errors between the sparse sources and their reconstruction vectors at the fusion center. We derive a lower-bound on the end-to-end performance of the studied distributed system, and propose a practical encoder-decoder design through an iterative algorithm.Comment: 5 Pages, Accepted for presentation in ICASSP 201

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2025