Moving Target Defense (MTD) can enhance the resilience of cyber systems
against attacks. Although there have been many MTD techniques, there is no
systematic understanding and {\em quantitative} characterization of the power
of MTD. In this paper, we propose to use a cyber epidemic dynamics approach to
characterize the power of MTD. We define and investigate two complementary
measures that are applicable when the defender aims to deploy MTD to achieve a
certain security goal. One measure emphasizes the maximum portion of time
during which the system can afford to stay in an undesired configuration (or
posture), without considering the cost of deploying MTD. The other measure
emphasizes the minimum cost of deploying MTD, while accommodating that the
system has to stay in an undesired configuration (or posture) for a given
portion of time. Our analytic studies lead to algorithms for optimally
deploying MTD.Comment: 12 pages; 4 figures; Hotsos 14, 201