research

Boundary interpolation for slice hyperholomorphic Schur functions

Abstract

A boundary Nevanlinna-Pick interpolation problem is posed and solved in the quaternionic setting. Given nonnegative real numbers κ1,,κN\kappa_1, \ldots, \kappa_N, quaternions p1,,pNp_1, \ldots, p_N all of modulus 11, so that the 22-spheres determined by each point do not intersect and pu1p_u \neq 1 for u=1,,Nu = 1,\ldots, N, and quaternions s1,,sNs_1, \ldots, s_N, we wish to find a slice hyperholomorphic Schur function ss so that limr1r(0,1)s(rpu)=suforu=1,,N,\lim_{\substack{r\rightarrow 1\\ r\in(0,1)}} s(r p_u) = s_u\quad {\rm for} \quad u=1,\ldots, N, and limr1r(0,1)1s(rpu)su1rκu,foru=1,,N.\lim_{\substack{r\rightarrow 1\\ r\in(0,1)}}\frac{1-s(rp_u)\overline{s_u}}{1-r}\le\kappa_u,\quad {\rm for} \quad u=1,\ldots, N. Our arguments relies on the theory of slice hyperholomorphic functions and reproducing kernel Hilbert spaces

    Similar works