We propose a new anytime hierarchical clustering method that iteratively
transforms an arbitrary initial hierarchy on the configuration of measurements
along a sequence of trees we prove for a fixed data set must terminate in a
chain of nested partitions that satisfies a natural homogeneity requirement.
Each recursive step re-edits the tree so as to improve a local measure of
cluster homogeneity that is compatible with a number of commonly used (e.g.,
single, average, complete) linkage functions. As an alternative to the standard
batch algorithms, we present numerical evidence to suggest that appropriate
adaptations of this method can yield decentralized, scalable algorithms
suitable for distributed/parallel computation of clustering hierarchies and
online tracking of clustering trees applicable to large, dynamically changing
databases and anomaly detection.Comment: 13 pages, 6 figures, 5 tables, in preparation for submission to a
conferenc