Numerical evaluation of ruin probabilities in the classical risk model is an
important problem. If claim sizes are heavy-tailed, then such evaluations are
challenging. To overcome this, an attractive way is to approximate the claim
sizes with a phase-type distribution. What is not clear though is how many
phases are enough in order to achieve a specific accuracy in the approximation
of the ruin probability. The goals of this paper are to investigate the number
of phases required so that we can achieve a pre-specified accuracy for the ruin
probability and to provide error bounds. Also, in the special case of a
completely monotone claim size distribution we develop an algorithm to estimate
the ruin probability by approximating the excess claim size distribution with a
hyperexponential one. Finally, we compare our approximation with the heavy
traffic and heavy tail approximations.Comment: 24 pages, 13 figures, 8 tables, 38 reference